
API Modelling Techniques– Increasing Software’s
Appetite for the World

Sirvan Almasi
Imperial College London
s.almasi@imperial.ac.uk

William J.Knottenbelt
Imperial College London

wjk@imperial.ac.uk

Abstract—The importance and number of web applications are
increasing. It is also common for many of these web applications
to have well documented and consistent APIs. The question of
how to communicate one’s API to a human and machine is solved
by tools and standards such as the OpenAPI. However, writing
and maintaining a lengthy JSON or YAML document is not user
friendly. In this paper we take a design first approach and look
at human-centric methods in crafting an API from scratch using
model-driven and visual techniques. This short paper attempts
to be exploratory and thus offers three methods in how together
or alone they can add value and be better than existing methods.
These methods are more concise in communicating an API and
offer an engaging route to the development of an API. We believe
this approach is most beneficial to innovative organisations that
require rapid prototyping. The end results of our methods are
that the user can go from an idea to a working API infrastructure
quicker than using existing tools and methods.

I. INTRODUCTION

Web services are eating the world. This is of course a play
on Marc Andreessen’s 2011 essay title—Why Software is
Eating the world [1]. The internet and the web is growing
and migration of desktop applications to the web are evidence
to our statement: Autocad [2] and Microsoft Office [3] are
two important examples of popular desktop applications that
have traces on the web now. There are several reasons for
this to-the-web migration: 1) Users are using multiple devices;
2) Collaborative working. The likes of Google Docs [4] have
proven that this web-based working is a successful innovation.
The Chromebook is an implied intent that web-based working
can become the norm. So, not only web applications are
growing naturally but more desktop applications are migrating
to the web too.

Our motivation for this paper is based on the arguments that
software is an economic activity and that innovation requires
software for which rapid development and testing is required.
We look at three methods in improving the process of web
API development by making them more human-centric.

Software development is an economic activity [5]. Programmers
have often spent time on the wrong aspects and fallen to

“premature optimisation” [6]. We have increased our pace in
the software economic race through abstractions. One can
tell the history of software through a lens of abstraction.
Abstraction has enabled greater productivity whilst allowing
for an increasing complexity underneath the abstraction. Why

is this abstraction needed? Because it reduces the friction costs
(time, cognitive demand, etc.) Do we need to treat software
development as an economic activity? As of 2021 we see more
innovations that are either software based or are dependent on
software. John Holland describes the innovation process as a
search through a large space of possibilities [7]. Whilst we are
getting more intelligent with innovation, there is still a need
to search through a large space of possibilities. Therefore, we
need to decrease the cost of the search whilst increasing the
pace of the search. So, yes, software has to be treated as an
economic activity.

The OpenAPI specification [8] is a popular tool and is often
used to create machine readable API specification for RESTful
APIs. OpenAPI is an API descriptive language authored by
Tony Tam in 2010 (first release in 2011), according to Tony Tam
[9], the motivation was due to the problem of communication
related to consuming web services. That is not knowing how
to consume an API. According to Tony himself, the inception
of Ruby, Python and PHP as web development languages and
complexity of WSDL and SOAP led to the problem. OpenAPI
is a simple contract for an API (what to give and what to
expect). Why not begin with designing that contract? Planning
an interface for software first is actually a good idea. This is the
design first approach. We believe a design first approach can
save time in developing what we call Whole Software—source
code, documentation and architecture. The OpenAPI approach
can link documentation with source code and it can also be
used to generate code. Therefore, building whilst designing is
possible.

Our main contribution is the exploration of alternatives methods
for designing and building web APIs rapidly. We develop three
methods that show promises in being more engaging and more
human-centric than writing raw OpenAPI documents.

II. BACKGROUND

Representational State Transfer (REST) is an “architectural
style for distributed hypermedia systems” [10], and it was
created by Roy Fielding in 2000. It is merely an attempt to
standardise the usage of HTTP when creating web applications
and their corresponding APIs. The usefulness of the REST
architecture style is the deliberate attempt in creating constraints
in the design process. These constraints are useful in focusing

the decision making flow. REST constraints and elements are
shown in Table I.

Constraints Elements of REST
Client-Server Resource

Stateless Resource identifier
Cache Representation

Uniform Interface Representation metadata
Layered System Resource metadata

Code-On-Demand Control data

TABLE I: Table showing the elements and constraints of the
REST architectural style as described by Roy Fielding

As discussed in the introduction, there came a problem with
the communication of RESTful APIs as this style became more
common. How does one discover and learn to use an API? What
data is the endpoint expecting and what should I expect back in
return for a request? Knowledge of a resource identifier was no
longer good enough—especially for complex applications. This
is a documentation problem but also a design and development
problem at the same time. We can either generate some
documentation from our source code or design it first and
have that guiding both documentation and development—a
blueprint. Moreover, having a machine-readable description
of an API can also assist in code and document generation.
hRESTS [11] is one of the earliest attempt in standardising
and structuring the description of an API.

Model-driven design of RESTful APIs have been rare but
not non-existent. The work of M. Laitkorpi et al. [12] to
our knowledge is the first attempt in applying model-driven
techniques to RESTful APIs. Model-driven techniques for
the semantic web applications [13] offer a more granular
and heavily graphical approach. In our opinion taking a
resource first approach yields better outcome and is easier
to communicate. Model-driven designs have the disadvantage
of becoming overly complex as all the data is displayed on
one layer.

III. OPENAPI DESIGN PATTERNS

In this section we will look at the relationship between the
human and the process of creating an OpenAPI document.

OpenAPI is a JSON/YAML data structure that often comes in
a single file. The specification does, however, note that it can
be split into multiple files. The structure of OpenAPI Version
3 is as follows.

• Metadata: Information about the author, server, contact,
etc.

• Paths: Details about paths and their methods. The paths
include the type of data expected and the type data and
response type that will be returned to the user.

• Components: These are re-used components such as
schema, parameter and security components.

The following are some of the important limitations of OpenAPI
that we think needs to be addressed.

A. Top down structure

Majority of OpenAPI documents use references ($refs) to
link to common schemas or parameters. This linear structure
in our opinion is wrong. It forces the user to create paths
first rather than the schema or resources. Do remember that
RESTful API is resource orientated architecture. So, we must
begin with the resource first approach in designing an API.

B. Paths

A path is a resource identifier (URL, URN). It often points
to a known schema or a parameter component. The disjoint
structure means that one has to scroll very far to see their
components when designing them. Moreover, paths can be
predicted from resources. Therefore, we can generate the path
from a resource or schema. This step can be automated so that
the human designer can modify the generated path rather than
creating it from scratch.

C. Verbosity

The next issue is the verbosity of an OpenAPI document. Given
that we are taking the design first approach and assuming to be
designing a novel API, we require some immediate feedback in
order to test and re-adjust our course of action if we are heading
in the wrong direction. We may use art as an analogy here: art
rarely begins with a master stroke and the completion of one
area before moving to another area of the canvas. The artist
may begin with a sketch or an outline before adding layers
to the whole. Software design and the OpenAPI specification
enforces the unnatural habit of perfecting one section before
moving on; this also sounds similar to premature optimisation.
An example of this is descriptions and verbosity of describing
inputs and outputs: A single API will rarely deviate from a
given response type, e.g. json, however, in OpenAPI we are
required to type in this for all of our responses.

Descriptions are seldom useful at the beginning and should
come later once the user has some ’sketch’ or feedback from
their creation. e.g. for the path /pets/{petId} [14] with
a single parameter of petID, the description, “The id of the
pet to retrieve”, does not add any value.

D. Common parameters in schemas

We find that many schemas either reference each other or can
be a subset of one another. A human designer can visually
identify this relationship quickly if it was not written in a data
structure. Moreover, the human designer can relate the schemas
via non-text methods.

IV. NEW APPROACHES

In this section we will look at new approaches in overcoming
the shortfalls of API development and especially OpenAPI.
Recall that our intent is to speed up the process of web API
development in the context of novel and innovative projects.
This intent produces the following requirements.

• Must allow user feedback in order to adjust course of
action.

2

• Improve productivity:

– Motivation: Engaging and flow simulating workflow.
– Decreasing repetitive work: Potentially use code

generation and automation to reduce repetitive work.
– Providing assistance: For example, provide data type

suggestions.

The above requirements naturally force us to explore non-text
based programming. Domain Specific Languages (DSL) have
been the driving force in reducing repetitive work. Ruby, SASS
and SQL are examples of such languages. Model and flow-
based programming in engineering have proven to be time and
cost efficient [15]. LabView [16], Simulink [17], and specific
use cases such as at Motorola [18] are great examples of how
alternative and more human-centric design and programming
have been successful in other fields.

For the following methods we will demonstrate the concepts
using the OpenAPI PetStore example1. Figure 1 shows the
PetStore schemas as a YAML format and alternative means of
communicating the same thing.

We will focus on two areas with respect to each of the design
methods below. These are two weak areas in the current
approach that we think can be improved, they are as follows.

1. Representation of resources and their relationships to
one another. Using the PetStore example, we see that
the schema Pet and NewPet have a relationship which
can be noted as follows. Pet = {id, name, tag} and
NewPet = Pet \ {id}.

2. Automating future steps. Often, paths can be generated
from a resource. Most resources undergo some CRUD
operation in their lifetime, all of which can be automated
to a certain extent.

A. Model and flow-based programming

Flow-based programming was developed by J. Paul Morrison
during the early 1970s [19]. It is a non-linear approach
to developing applications: it is based on the idea that an
application is continuously transformed by multiple data
streams as opposed to a single actor manipulating it. It is
a type of data-flow programming, and also takes us towards
visual programming.

This method is ideal for web APIs, mainly because we can think
of API endpoints as nodes with inputs and outputs (independent
of other endpoints). Figure 2 visualises a concept in how we can
use visual and flow-based programming techniques in creating
a web API design tool.

1https://github.com/OAI/OpenAPI-Specification/blob/main/examples/v3.0/
petstore-expanded.yaml

Fig. 2. Concept of how visual programming and data-flow programming can
be combined to create a method for developing web APIs.

B. Tabular and spatial-based design

We can visualise the schema relationships via a table. This
table is easier to digest and comprehend that NewPet is a
subset of Pet. Figure 3 demonstrates how we might be able
to achieve this.

Pet

NewPet

id: Integer

0 1 1

name: String tag: String

Fig. 3. Tabular representation of the relationship between two schemas as per
Pet = {id, name, tag} and NewPet = Pet \ {id}.

We can do more with this tabular format of a schema. We
can represent more useful information on the schema which
then is inherited by future operations. Figure 4 shows how
we can represent user security methods and output formats.
The benefit of this is that we don’t have to specify these
security information in our endpoints or specify an output
format. Moreover, relationships inherit these features. In our
example, NewPet would inherit the security constraint that
the field tag can only be manipulated by an admin.

Pet

NewPet

id: Integer

0 1 1

name: String tag: String

GET admin

POST admin

PUT admin

DELETE _

GET auth-users

POST auth-users

PUT auth-users

DELETE admin

json xml

Fig. 4. One can place more useful information on the tabular version of the
schema. This example shows how ‘Pet‘ and its subsets can only be manipulated
by auth-users and admin. We can also set our output formats here on the same
table.

C. Domain Specific Language (DSL)

DSLs are strong contenders to create web APIs. Many DSLs
are focused on the entire development of the web application.

3

https://github.com/OAI/OpenAPI-Specification/blob/main/examples/v3.0/petstore-expanded.yaml
https://github.com/OAI/OpenAPI-Specification/blob/main/examples/v3.0/petstore-expanded.yaml

Pet

NewPet

id: Integer

0 1 1

name: String tag: String

Pet

NewPet

OpenAPI Tabular

Visual

Using shapes and venn diagrams to convey meaning

components:

 schemas:

 Pet:

 allOf:

 - $ref: '#/components/schemas/NewPet'

 - type: object

 required:

 - id

 properties:

 id:

 type: integer

 format: int64

 NewPet:

 type: object

 required:

 - name

 properties:

 name:

 type: string

 tag:

 type: string

Fig. 1. This figure shows two OpenAPI schemas for which one is a subset of another. On the right we show the corresponding visualisation of the same data
structure.

However, we are more concerned with setting up a basic
infrastructure. Listing 1 shows a snippet of DSL that we have
been experimenting with in creating endpoints for the Pet Store
example.

Listing 1. DSL showing how one might be able to generate endpoints for a
web API.
(e n d p o i n t " / p e t "

: g e t ((t ag , l i m i t) −> [P e t])
: p o s t (newPet −> P e t))

(e n d p o i n t " / p e t / (p e t : i d) "
: g e t (_ −> P e t)
: d e l e t e (_ −> (2 0 4 , " P e t d e l e t e d "))
: p u t (newPet −> P e t))

D. Structure

The methods that we have described would benefit from the
following structure.

• Users: User types and groups that can be used in the
other sections.

• Security: Users and security have an explicit relationship
and therefore they should follow one another.

• Resources: We specify our resources in this section and
their relationships to one another.

• Paths: Certain paths are automatically generated for the
resources that were described in the step above.

V. DISCUSSION

We believe a design first methodology can bring efficiency
in software development and maintenance. For web APIs,
designing the interface first introduces positive constraints.
Such constraints can be helpful in focusing the project.

This work has been exploratory in its nature, and there needs to
be a comparison of each of the methods described in order to
understand their limitations. Whilst we don’t yet know which
method is faster in developing an API, we do know that they
are more concise and more engaging to work with than raw
OpenAPI or programming from scratch.

What we have described can be considered a blueprint and
one can argue that source code eventually decouples from its
blueprint. So far we haven’t had a good example of blueprints
staying forever in sync with their code. We can argue that in
our context of rapid prototyping it is fine to eventually decouple
from code and blueprint as we are more focused on small scale
web APIs.

VI. FUTURE WORK

We have provided some novel techniques that each require
further design and development. We have been developing and
experiment with the proposed methods. Our first step is to
finish the tabular method and the code generation that sits
alongside it. Next, we will create and compare the tabular
method with the flow-based programming using user studies.
We will relate these findings with a base case study that uses
OpenAPI and programming first methods.

We can extend the approaches described here for non-REST
API styles, such as GraphQL [20] and even gRPC [21].

VII. CONCLUSION

In this paper we noted the weaknesses within the current
OpenAPI design and development process. The unnatural
structure of the OpenAPI makes it unintuitive to get feedback
and design rapidly. OpenAPI is verbose and forces premature
optimisation. And lastly, the most important aspect of REST,
resources, is demoted to the bottom of an OpenAPI specifi-
cation. Automating endpoint generation once a resource has
been defined is an example of how we can speed up the design
cycle.

We proposed three new methods for human-centric web API
design and development. Flow-based programming and visual
methods allow us to reduce the education barrier whilst
improving the feedback of ones work. Our novel tabular format
is more concise and is more intuitive to use. The tabular format
also allows us to embed security information and response
formats for a given resource. These properties improve security
as they can cascade down to the endpoints and other operations
on the resources.

4

REFERENCES

[1] M. Andreessen, “Why Software Is Eating The World,” Wall Street
Journal, Aug. 2011. [Online]. Available: https://online.wsj.com/article/S
B10001424053111903480904576512250915629460.html

[2] “AutoCAD Web App - Online CAD Editor & Viewer | Autodesk.” Apr.
2021. [Online]. Available: https://web.autocad.com/login

[3] “Office 365, Microsoft Office,” Apr. 2021. [Online]. Available:
https://www.office.com/

[4] “Google Docs,” May 2021. [Online]. Available: https://docs.google.com

[5] Oracle Developers, “Clojure Made Simple,” Jun. 2015. [Online].
Available: https://www.youtube.com/watch?v=VSdnJDO-xdg&ab_chann
el=OracleDevelopers

[6] D. Knuth and D. J. Fuller, Art of Computer Programming, Volumes 1-4A
Boxed Set, The, 1st ed. Amsterdam: Addison-Wesley, Mar. 2011.

[7] J. Holland, “Innovation in Complex Adaptive Systems: Some
Mathematical Sketches | Santa Fe Institute,” 1993. [Online]. Available:
https://www.santafe.edu/research/results/working-papers/innovation-in-
complex-adaptive-systems-some-mathem

[8] “OAI/OpenAPI-Specification,” OpenAPI Initiative, Apr. 2021. [Online].
Available: https://github.com/OAI/OpenAPI-Specification

[9] IBM Developer, “Tony Tam recounts the history of Swagger and the
Open API Initiative,” Mar. 2016. [Online]. Available: https://www.yout
ube.com/watch?v=oxqZ9J6t420&ab_channel=IBMDeveloper

[10] R. Fielding, “Fielding Dissertation: CHAPTER 5: Representational State
Transfer (REST),” 2000. [Online]. Available: https://www.ics.uci.edu/~f
ielding/pubs/dissertation/rest_arch_style.htm

[11] J. Kopecký, K. Gomadam, and T. Vitvar, “hRESTS: An HTML Micro-
format for Describing RESTful Web Services,” in 2008 IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent
Technology, vol. 1, Dec. 2008, pp. 619–625.

[12] M. Laitkorpi, P. Selonen, and T. Systa, “Towards a Model-Driven Process
for Designing ReSTful Web Services,” in 2009 IEEE International
Conference on Web Services, Jul. 2009, pp. 173–180.

[13] M. Brambilla, S. Ceri, F. M. Facca, I. Celino, D. Cerizza,
and E. D. Valle, “Model-driven design and development of
semantic Web service applications,” ACM Transactions on Internet
Technology, vol. 8, no. 1, p. 3, Nov. 2007. [Online]. Available:
https://dl.acm.org/doi/10.1145/1294148.1294151

[14] “OAI/OpenAPI-Specification PetStore Example,” Aug. 2019. [Online].
Available: https://github.com/OAI/OpenAPI-Specification

[15] “General Motors Developed Two-Mode Hybrid Powertrain With
MathWorks Model-Based Design; Cut 24 Months Off Expected Dev
Time,” Oct. 2009. [Online]. Available: https://www.greencarcongress.c
om/2009/10/general-motors-developed-twomode-hybrid-powertrain-wi
th-mathworks-modelbased-design-cut-24-months-of.html

[16] “LavView: Graphical system engineering software,” May 2021. [Online].
Available: https://www.ni.com/en-gb/shop/labview.html

[17] “Simulink - Simulation and Model-Based Design,” May 2021. [Online].
Available: https://uk.mathworks.com/products/simulink.html

[18] T. Weigert, “Practical Experiences in Using Model-Driven Engineering
to Develop Trustworthy Computing Systems,” in IEEE International
Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing
-Vol 1 (SUTC’06), vol. 1. Taichung, Taiwan: IEEE, 2006, pp. 208–217.
[Online]. Available: http://ieeexplore.ieee.org/document/1636178/

[19] J. P. R. Morrison, “Flow-based Programming.” [Online]. Available:
https://jpaulm.github.io/fbp/

[20] “GraphQL Query Language,” May 2021. [Online]. Available: https:
//graphql.org/

[21] “gRPC,” May 2021. [Online]. Available: https://grpc.io/

5

https://online.wsj.com/article/SB10001424053111903480904576512250915629460.html
https://online.wsj.com/article/SB10001424053111903480904576512250915629460.html
https://web.autocad.com/login
https://www.office.com/
https://docs.google.com
https://www.youtube.com/watch?v=VSdnJDO-xdg&ab_channel=OracleDevelopers
https://www.youtube.com/watch?v=VSdnJDO-xdg&ab_channel=OracleDevelopers
https://www.santafe.edu/research/results/working-papers/innovation-in-complex-adaptive-systems-some-mathem
https://www.santafe.edu/research/results/working-papers/innovation-in-complex-adaptive-systems-some-mathem
https://github.com/OAI/OpenAPI-Specification
https://www.youtube.com/watch?v=oxqZ9J6t420&ab_channel=IBMDeveloper
https://www.youtube.com/watch?v=oxqZ9J6t420&ab_channel=IBMDeveloper
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://dl.acm.org/doi/10.1145/1294148.1294151
https://github.com/OAI/OpenAPI-Specification
https://www.greencarcongress.com/2009/10/general-motors-developed-twomode-hybrid-powertrain-with-mathworks-modelbased-design-cut-24-months-of.html
https://www.greencarcongress.com/2009/10/general-motors-developed-twomode-hybrid-powertrain-with-mathworks-modelbased-design-cut-24-months-of.html
https://www.greencarcongress.com/2009/10/general-motors-developed-twomode-hybrid-powertrain-with-mathworks-modelbased-design-cut-24-months-of.html
https://www.ni.com/en-gb/shop/labview.html
https://uk.mathworks.com/products/simulink.html
http://ieeexplore.ieee.org/document/1636178/
https://jpaulm.github.io/fbp/
https://graphql.org/
https://graphql.org/
https://grpc.io/

	Introduction
	Background
	OpenAPI design patterns
	Top down structure
	Paths
	Verbosity
	Common parameters in schemas

	New approaches
	Model and flow-based programming
	Tabular and spatial-based design
	Domain Specific Language (DSL)
	Structure

	Discussion
	Future work
	Conclusion
	References

